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A novel procedure for the analytic evaluation of duster  integrals is given. By 
means of a result of Silverstone and Moats which transforms the spherical 
harmonic expansion of a function around a given point into a new spherical 
harmonic expansion around a displaced point, a 3N-dimensional cluster integral 
for N point particles (N > 2) may be reduced to 2N + 1 trivial integrals and 
N -  1 interesting integrals, an improvement over the usual reduction to six 
trivial integrals and 3N - 6 nontrivial integrals. For hard spheres, the N - 1 
integrals involve only a series of simple polynomials taken between linear 
algebraic bounds. 
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1. INTRODUCTION 

The pressure P of an imperfect unionized gas may in general be expanded 
as a virtual series 

P V  _ n(1 + + + + �9 KB T B20 B3p 2 B4O 3 " ' )  (1 .1 )  

n being the number of particles in the system, p being the number density, 
and the By being the virial coefficients. A major problem of equilibrium 
statistical mechanics is the calculation of the virial coefficients from the 
intermolecular potentials. As is well known, (1) each B N may be obtained 
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from the potential energy in terms of the coordinates of N particles. For 
short-range, two-body central forces, the expression for B:v is a single 
3N-dimensional integral. A major limitation of this theory is the difficulty 
in performing the multidimensional integrals. If one ignores surface effects, 
translational and rotational symmetry make the first six integrations (for 
N = 2, the first five integrations) trivial; the remaining 3N - 6 integrals are 
more challenging. 

The form of the virial coefficients has been most extensively studied 
for the hard-sphere fluid, (2-5) in which the sphere-sphere potential U(r) is 

U(r) = + oo, e -By(r) = 0 (r < d )  (1.2) 

U(r) = O, e -r = 1 (r > d )  

d being the sphere diameter and fl = (K a T)-1. Values for B 2 through B 7 
have been obtained by analytic and numerical means. For example, 

where 

B3--- I V f drldr2dr3f12f~3f23 (1.3) 

f~j = exp [ - f lU( r~ ) ]  - 1 (1.4) 

r ~  = r i - rj, and r,. is the location of molecule i. This may be reduced to 

B 3 oc f d r l 2  dr,3 dr23 f,2f13 f23 (1.5) 

where rl2 = Irj21, where r12, q3, and r23 must satisfy such triangle inequali- 
ties as Irl3 - 1"231 < r12 < r13 + r23. B 4 may similarly be reduced to a sixfold 
integral over the distances between pairs from a set of four particles, where 
again the ry must satisfy triangle inequalities. For j > 5 the geometric 
constraints from the f j  are so complex that numerical and Monte-Carlo- 
type procedures have generally been used to calculate the Bj. 

In this paper, a new technique for the analytic evaluation of cluster 
integrals is demonstrated. For a cluster of N point particles, one need only 
perform an ( N -  1)-fold integral. For clusters of simple topology, the 
integral is closed; for more complex clusters, infinite series (whose conver- 
gence is treated) can arise. The results given here are therefore similar to 
those of Katsura, (4) but the integrals found here are more elementary, and 
the number of indices over which explicit summations are needed is 
smaller. The following section presents the general results, and applies them 
to a hard-sphere system. 

In Section 3, the results are discussed and compared with those in the 
literature. 
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2i GENERAL RESULTS: HARD-SPHERE POTENTIAL 

For a system in which only additive two-body forces are important, an 
N-particle cluster integral may be written as a product of M a y e r f  functions 
f j  integrated over all possible configurations of the N particles in the 
cluster. The f j  are related to the intermolecular potential U/j via Eq. (1.4), 
each f j  being spherically symmetric about  either r i or rj. Our general line of 
attack is to expand each f j  (i, j 4 = 1) in terms of coordinates rli , rlj mea- 
sured from a single particle l, located at rl, and then integrate over the r v. 

The expansion of a function f(rg) = f(lr~ - rlj[) in terms of r~i and rlj 
is a solved problem, at least in spherical polar coordinates. Silverstone and 
Moats (6) treat the general question of expressing a function of the form 
F(r) = f(r)YLM(O, ep) in terms of spherical harmonics and radial functions 
centered on a displaced origin, simplifying the previous results of 
Sharma. (7) It is shown by Silverstone and Moats that a displaced function 
for F(r) may be expanded as 

F( r  - R) ~,  t+ L = ~ VP, L ( r ,R )  
t=0 X=F-LI 

1+ L+X even 
l 

X E C7~LMImY~,M-m(OR'~R)YIm(O'~) (2.1a) 
m= - I  

CXLMtm = f der Z~,M_m(Or ,*r) Y~m(Or ,*r) YLM(Or,~r) (2.1b) 

(L+l+~/2 (r+t+X-2a)/2 R )2b-l- 
27r(R- 1)l E E DlXLab ( 1 

a=0 b=0 

Xalr_ gl ~ -~ f (r ' )dr '  (2.1c) 

pt~z. ( r ,  R ) - - -  

DtXL~ a = 1/[(2a)!! (2a--  2 L -  1)!!(2b - 2 l -  1)!!(L + 1 + 2~- 2 a -  2b)!! 

•  1)!!] 

(2N)!!= 2NN! 

(2N - 1)!! = ( 2 N ) ! / ( 2 N ) ! !  

( - 2 N -  1)!!= ( -  1)u / (2U--  1)!! 

Here ~2 r is the angular part of the spherical polar 
Ytm(O, ~) follow the normalization of Edmonds, (8) so in particular YFm(O, qJ) 
= (-- 1)mrt,_m(O, ~). 

(2.1o) 

(2.1e) 

(2.l f) 

(2.1g) 

coordinate r. The 
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By means of Eq. (2.1), and use of relative coordinates rij any N- 
particle cluster integral f dr 1 dr 2 . . . . .  dr N [ . . .  product of f f u n c t i o n s . . .  ] 
may be put into the form f d r l d q 2 , . . . ,  drlN[G], where in [G] (1) a l l f  
functions involving particle 1 are left undisturbed, and (2) all F,j with i v ~ 1 
a n d j  v ~ 1 are rewritten in terms of the v,xL(Ir,,l, ]rlj[), multiplied by spheri- 
cal harmonics centered on r 1. The resulting integrals f df~lr over products 
Ylm(~21r) Yrm,(falr)... are, however, trivial, and exist in tabulated form. As 
will be seen below, in many cases one finds l ,m = l ' ,m'= . . .  =--0,0, 
eliminating sums over the indices 1 and m. On performing the angular 
integrals, one is left with f dr 1, which is the volume of the system, and 
N - 1 integrals over the distances dr12 . . .  dr11 v. By these steps, the original 
3N-dimensional integral can be reduced to an ( N -  1)-dimensional form. 

The hard-sphere potential [Eq. (1.2)] is now used to generate examples 
for spheres of unit diameter: f/j = 0 (r O. > 1) and f/j = - 1 (r/j < 1). The 
spherical harmonic expansion of fq, for coordinates centered on r l, is 

f j  = -(47r)l/2yoo(~), r/j < 1 (2.2a) 

f~j = O, r O. > 1 (2.2b) 

Since f/j is a sphere, in Eqs. (2.1) one has L = M = 0, and l = )~. Equations 
(2.1) then become 

oo l 

F(r  - R) = ~ V,to(r, R ) ~ Cmo,m Y,,_ m (aR) Y,m (ar) (2.3a) 
l = 0  m =  - - I  

V(~,r)__ 2~'(--1)l ~ l-aE DllOab( r ~2b-l-l f r+R(  r'X2a+l) f(r')dr' (2.3b) 
a=0b=0 

For small l, vtt o has simple forms: 

 (min( 1  2.4a,, 
vllo(r,s)=O, l > O ,  r + s < l  or I r - s  I > 1  (2.4b) 

~g 
v,i0(r,s) - 4r-Ss 2 [1 - 2r 2 -  2s 2 -  2r2s 2 + r 4 + S4] [ --(47g) 1/2] 

r + s >  1, I r - s  t <  1 (2.4c) 

V22o(r,s) = 8r3s----E7 [(1 - r 2 -  s2) 3 -  4r2s2(1 - r 2 -  s 2) ] [ -  (4~r) 1/2] 

r + s > 1, Ir - s I < 1 (2.4d) 

where min{ } takes the value of the lesser of its two arguments. 
We begin with the two-point function B 2 = (2 V)-  i f  dr 2 dr 3 f23. For the 

sake of demonstration, f23 is expanded about an arbitrary third point ri,  
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with r = r 2 -  r n, s = r 3 -  r 1, so 
09 l 

B 2 = drds 2 V,,o(r,s) N Goo,mYL(as) Ytm(ar) (2.5) 
/ = 0  r n =  - 1  

The angular integrals vanish unless l,m = 0,0. fdl2 Yoo = (4~r) 1/2, while 
Cooooo = (4~r)-1/2. For a spherical system with a hard outer wall, the radial 
integrals have limits 0 and L, L being the radius of the complete system. 
Since B 2 is symmetric in r and s, we only need treat the region with r > s. 
Vooo(r, s) vanishes for r - s > 1, so 

+V-'4~r2foldrfordsrs(min((rls)2 ) - ( r -  s) 2 ) (2.6) 

The limits on the integral are so arranged that ( r -  s)2~< 1. Noting V 
= 4~rL3/3, Eq. (2.6) is 

B 2 = 2~r/3 + O(L2/V)+ O(V-') (2.7) 

The term in L2/V is a surface correction, while 2~r/3 is the conven- 
tional O) value for B 2. Of greater interest is the third virial coefficient 

B3= 3V1 fdr, dr2dr3f12f13f23 (2.8) 

which can be expanded as 

oo I 

B3=-~ f drf dsf(r)f(s) ~P,,o(r, s) X CloolmY?m(~s) Ylm(~'2r) (2.9) 
l = 0  m =  - I  

The angular integrals again vanish for l > 0, so Eq. (2.9) is 

4 ~ 2  r l  r l  1 - - s)2) = 5 " ( ~ ) 2  

which is the well-known value for the third virial coefficient of a system of 
hard spheres. However, the reduction from Eq. (2.8) to Eq. (2.10) has left 
one with a two-dimensional integral, rather than the three-dimensional 
integral one might have expected. The simplification becomes more spec- 
tacular if one considers a cluster of four particles. 

Using the customary symbolic notation, the fourth virial coefficient 
can be expanded in terms of closed cluster integrals 

B 4 = - 8 V -  'fdrl dr2dr 3 d r  4 [3f12f23f34f4, + 6f,2f23f34f41f13 

+f12f13f,4f23f2,f34] (2.1 1) 
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Some perturbation theory calculations also make use of open cluster 
integrals such as fdr2dr3f12f23f34 or fdrEdr3f12f23fa4f13f24. The first 
diagram in B 4, hereinafter (1~ denoted D 4, is 

D 4 = Vfdr  ds dt f ( r ) f ( r  - s)f(s - t)f(t)  (2.12) 

where t = r i - r 4, On separate expansion of f ( r  - s) and f ( r  - t) 

oo 1 l '  

D 4 =  V f  drdsdt f(r)f(t) E • ~ Vzzo(r,s)vr,'o(s,t) 
1,l=O m = - l  m'=- t"  

(2.13) 
X Clool m Cl,oOl, m, V~m (~r) Yb~ (f],) r~'m'(~'~s) Yl'm'(~t) 

The integral over f~, vanishes for lm v a I'm' because of the orthogonal- 
ity of the Ylm' The angular parts of the integrals on r and t vanish for 
lm v a 0 and I'm' --/= O. D4 is then 

D4=-4~r3Vs163163 (r+s)2}-min{1 (r - s)2 } ] 1  

One notes that D 4 is an integral over simple polynomials between simple 
bounds. The presence of the min{ } function will complicate the calcula- 
tion, but no further thought about the details of solid geometry is required. 
One has 

. . . .  3(2.59047619) 

(2.15) 

in agreement with the known result. O) The term of Eq. (2.15) within the 
square brackets is the open duster  integral (d3)l 2 (for q2 < 1) of Rowlin- 
son.(3) 

The fully connected four-point integral 

D 6 = fdr, clr2 dr3 dr 4 f12f13f21 f23f24f34 (2.16) 

presents a new level of complication. Substitution of Eq. (2.1) shows 

D6 = V f  drdsdt f(r)f(s)f(t) ~ ~a Ptto(r,s)Vrro(t,s) 
l,l',1"=0 m,m',m" 

• vr, r,o(t, r) Y~'m (fa~) Y,m (ft,) Y~,m,(~'~ 3 rt,m,(f]s) Yt~m,,(~'~ 3 Yl,,m,,(~3 (2.17) 
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For each angular integral the integrand is of the form Y~m(~2)Yl,m,(~); these 
vanish for lm v ~ l'm'. Since each angular argument appears twice, the 
sixfold sum on the l and m collapses as far as a single sum on l, but no 
further. For  D 6, one obtains a triple integral over an infinite series 

D6 
dU dU d u  1 = 0  

the limits on r, s, and t deriving from the flj functions. The integral is 
substantially simplified by using the symmetry between r, s, and t to 
integrate only over the region with 1 >/r /> s/> t/> 0. The first terms of 
2.18 are D6(l = 0) = (2~r/3)3(1.025669627)V and D6(l = 1) = (2~r/3) 3 
(0.102656250)V; the exact value is D6  ( to ta l )=  V. (2~r/3)3(1.2669040). 
The first two terms amount  to 89% of the total. 

The rapidity of convergence of the power series in 1 should not be 
overstated. Since ~,tt0(r, s) (l > 0) vanishes unless r + s > 1, the range over 
which P110 is integrated is far less than that over which ~0o0 is integrated. By 
using the symmetry of D 6 between r, s, and t, (2.18) reduces to 

D 6 =  -6VfoldrfordSfoSdt[l=Oterm] 

~ 6 ~ ~ d r ( r d s f  s dt[l>Oterms] (2.19) 
, / 1 / 2  , 1 1 / 2  1 -  s 

If one considers only the more restricted range of integration, one finds 
0.62645 and 0.10266 for the contribution of the l = 0 and the l = 1 terms, 
respectively. 

If one did not perform the outermost integral (on r), but did integrate 
s and t over their complete ranges, one would gain an expression for 
the two-point open cluster integral corresponding to D6. Because of the 
min( ) functions in the ptlo(r,s), the two-point function must be tabulated 
separately for r < 1 /2  and r E (1/2,  1). Such a tabulation would be point- 
less unless enough terms in pu0(r, s) had been included to give a reasonable 
numerical value for D 6 itself. 

With clusters of more complicated topology, a single summation on l is 
not enough. The fully connected five-point cluster E l 0  (in Rowlinson's 
notation) is first worked as an example; some general rules relating clusters 
to their angular integrals are then set down. One has 

1 f E I O -  d r d r d r d r d r  _72gl]-7| 1 2 3 4 (2.20) 5 f12f13f14f15f23f24f25f34f35f45 J V  Y J 

Using the condensed notation v(5)(r,s)=-vzs,zs,o(r,s), C5 -= Cl~ootsms, and 
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Ys(~r) =- Ylsms(~r), and the new internal coordinate u - r 5 - r 1, one has 

E l 0  -- - (1 /30)(drdsdtduf (r ) f (s ) f ( t ) f (u)  d llml,12m2,13m3,lam4,lsms,16m6 
• ~ ,)(r, ~) rt(er) Vl(s t) r'~(e~) V~(et)~o)(r, u) r~(e 3 V3(~u) 
• "r t) Vr V4(s u) r~'(e~) Y~(s u) r~'(e,) v6(~) 

6 

X 1-I (--  1)mJCj (2.21) 
j = l  

The angular integrals are all over products of three Ytm(s functions, and 
therefore introduce the Wigner 3 - j  symbols 

[(21,+1)(212+1)(213+1)] 1/2 
f ds Yl,m,(s Ylzm2(s Y13m3(s = 4qr 

0 o ] \ml  mE m3 
Tables of 3 - j  and higher symbols and formulas for their numerical 

calculation are readily available. Substituting f(r) for a hard sphere, and 
noting that each pair ljmj appears in precisely two 3 - j  symbols, 

E l 0 =  l foldrfoldsfoldtfoldur2s2t2u2~ v(i)(r,s)v(2)(r,t)v(3 ) 
480~r 2 lml,lm2,lm3, lmn,lms,lrn6 

X (r'u)v(a)(S' t)v(5)(s'u)v(6)(t'u)( ~ 120 ~ )( -- llml -- 12m2 -- 13m3 ) 

X (~ 14 151(ll 14 [ 5 )(~ 14 16)( 12 14 16 ) 
0 o] \m l  -m4 - m s  0 0 m2 m4 -m6 

X (~ 15 161(13 15 16 ) ~  [Cj(2j+ 1)] (2.23) 
0 o]km3 m 5  m 6  j = l  

A further substantial simplification is possible by rewriting the products of 
3 - j  symbols in terms of the 6 - j  symbol, for which tabulated values also 
exist. From Edmonds, the 6 - j  symbol is 

j 4  J 5  j 6  m l  m 2  m 3  - - m l  m 5  m 6  

)<(j4 J2 j6 )( j4 j5 J3 ) 
m 4 - -  m 2 - -  m 6 - -  m 4 - -  m 5 - m 3 

X (-- 1) X6='U'+m3 ( 2 . 2 4 )  
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Ident i fy ingj] , j2 ,J3 ,J4, js ,  and j6 with ll, /3, /2, /6, /4, and l 5, respectively, 
noting that the 3 - j  symbols change phase during an odd permutation of 
columns by a factor ( - 1 )  j'+j2+j3, and rearranging the 3 - j  symbols with 
m = 0 to cancel the phase changes arising from the rearrangement of (2.23) 
into a product of the form of (2.24), the eight 3 - j  symbols of Eq. (2.23) 
have the reduced expression 

(~ 013 O]\ol2t(lll4ls)(lol412)(lo0 0 0 0 0'3 ls)(llo '61314 15/2} (2.25) 
the 6 - j  symbol eliminating the sum on m, the remainder of Eq. (2.23) 
being unaffected. Each of the 3 - j  symbols in expression (2.25) will vanish 
if the sum of its indices is odd; if the sum is even, each symbol can 
immediately be expressed as a product of factorials [Ref. 9, Eq. (3.7.17)]. 

While the polynomial series implied by Eq. (2.23) are somewhat bulky 
for paper-and-pencil manipulation, the integral involves only products of 
polynomials taken between numerical or linear polynomial bounds. Equa- 
tions (2.23) and (2.18) are therefore in a form particularly well-suited for 
evaluation by means of the symbolic integration routines now becoming 
available on digital computers. 

A general method for doing all of the angular parts of an N-hard- 
sphere cluster integral is now apparent: Sketch the symbolic diagram for 
the cluster integral; choose the most highly connected point in the cluster 
as the origin particle 1. For each line connecting a pair of particles i, j (i, j 
both > 1) one gains a sum on the indices lomij and a factor p(g)(lr~i[, ]rljl), 
the subscripts (/j) being lijlijO. The angular integral on f~j is found by 
counting the numbers of lines to particle j,  not including any connection to 
particle 1. If only one such line exists, the indices/ji, mji for that particle j 
have the unique value 0. If two such lines exist, their corresponding indices 
l, m are set equal to each other, but are not further constrained. If three 
such lines exist, one introduces for their indices a set of 3 - j  symbols as 
seen in Eq. (2.22). One notes from Eq. (2.3a) that m/j appears explicitly both 
as + m/j and as -rngj, a contingency dealt with by systematically entering 
into the 3 - j symbol the term + m O. if i > j and - my if i < j .  The partition 
function, of which each cluster integral is a part, does not change if one 
rotates the coordinate system; the explicit summations over the m~j should 
therefore not be necessary. These sums may be eliminated by use of 6 - j  
symbols and the orthogonality relations for the 3 - j  symbols. 

For diagrams of sufficient complexity (the fully connected six-particle 
cluster F15 is perhaps the simplest example) one must treat angular 
averages over products of four spherical harmonics, as treated implicity in 
Ref. 8, which argues that all of the more complicated angular averages over 
spherical harmonics can be expressed entirely in terms of 6 - j  symbols. 
These averages will not be treated at this time. 
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3. D ISCUSSION 

It is of course true that simplifying the calculations of cluster integrals 
is not the same as trivializing that calculation. To compute an N-particle 
cluster integral, one still needs to evaluate an (N - 1)-dimensional integral. 
For the hard-sphere system, this can be done analytically, if tediously. If 
one wants to proceed to analytic calculations using, e.g., the Lennard- 
Jones potential or other r - "  potential, one has to cope algebraically with 
the strong singularity in exp[-  ar - ' ]  near r = 0. For modeling reality, one 
may be better off with a clean analytic form for f (r)  rather than l/'(r). 
Quantum mechanical many-electron calculations of a realistic V(r) are 
only likely to give this function in numerical form, so that using realistic 
values of V(r) to determine f (r)  of um0(r ) will only be possible numerically. 
In a calculation B N for a series of values of N, the integrals in the definition 
of t, llo(R,r ) need only be performed once. After determining G(m,a) 
= fg(r')'nf(r ') dr' in steps of the integration mesh size for various m, G(m, a) 
may be used to compute all the utz 0. We have not investigated this point 
further. 

For most potentials, the results presented here will reduce the dimen- 
sionality of the integrals defining the BN, the final N -  1 integrations will 
still need to be done numerically. It may well be easier to do numerical 
integration of an ( N -  1)- rather than a ( 3 N -  6)-dimensional integral, 
regardless of whether optimized Monte Carlo or true numerical integration 
procedures are used, at least if the computer can use symbolic manipula- 
tion schemes to determine the exact forms of the integrals. 

The results of Section 2 for the fully connected four-particle cluster are 
in many ways similar to those of Katsura, who obtained a value for D 6 for 
the hard sphere + attractive square well potential by means of Fourier 
transforms, using intermediate expressions for D6 in terms of products of 
spherical Bessel functions and Gegenbauer polynomials. On performing the 
angular integrations, Katsura's method gives a three-dimensional integral 
over a triply infinite (3-index) power series. Summation of the nine lowest 
terms in the series gave good agreement (0.1%) with the known hard-sphere 
value for D6. Many of Katsura's intermediate formulas, such as the 
integrals over products of spherical Bessel functions, are similar to the 
intermediate formulas which appear in the work of Silverstone (1~ and 
Silverstone and Moats, (6) on which this work is based. The substantial 
differences between the results given here for hard spheres and the results 
of Katsura are as follows: (i) The intermediate calculations here require a 
lower level of analytic sophistication and (ii) the generality of application of 
the technique has perhaps been made more apparent. 

The use of spherical harmonic expansions in equilibrium statistical 
mechanics is not altogether new. One notes, for example, the work of Steele 
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and coworkers, (11-1~) Blum and Torruella, (15) Sandier,(16) and Jepsen and 
Friedman. (17) Much of this work deals primarily with the existence of 
orientation and angle-dependent interactions, and their effect on transla- 
tional and orientational pair correlation functions and on the second virial 
coefficient. Chen and Steele (14) do treat third and fourth virial coefficients, 
and the corresponding contributions to the pair distribution function, in the 
Percus-Yevick approximation, using a Fourier transform technique similar 
to that of Katsura. The results in Refs. 11-16 thus largely do not make use 
of multicenter integrals of the sort whose simplification has here been 
discussed. The work of Jepsen and Friedman treats angle-dependent inter- 
actions, using a Fourier transform technique to examine ring and ringlike 
diagrams as they relate to solute-solvent-solute forces. Since the funda- 
mental equation (2.3) can be used to expand functions f(r)YrM(f~ ) for 
L M  v a 00, a direct extension of the results of this paper may in principle be 
applied in the calculation of higher coefficients of nonspherical particles. 
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